Degrees of Stretched Kostka Coefficients

نویسنده

  • TYRRELL B. MCALLISTER
چکیده

Given a partition λ and a composition β, the stretched Kostka coefficient Kλβ(n) is the map n 7→ Knλ,nβ sending each positive integer n to the Kostka coefficient indexed by nλ and nβ. Derksen and Weyman [DW02] have shown that stretched Kostka coefficients are polynomial functions of n. King, Tollu, and Toumazet have conjectured that these polynomials always have nonnegative coefficients [KTT04], and they have given a conjectural expression for their degrees [KTT]. We prove the values conjectured by King, Tollu, and Toumazet for the degrees of stretched Kostka coefficients. Our proof depends on the polyhedral geometry of Gelfand–Tsetlin polytopes and uses tilings of GT-patterns, a combinatorial structure introduced in [DLM04].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RIMS - 1824 Rigged Configurations and Catalan , Stretched Parabolic Kostka

We will look at the Catalan numbers from the Rigged Configurations point of view originated [9] from an combinatorial analysis of the Bethe Ansatz Equations associated with the higher spin anisotropic Heisenberg models . Our strategy is to take a combinatorial interpretation of Catalan numbers Cn as the number of standard Young tableaux of rectangular shape (n2), or equivalently, as the Kostka ...

متن کامل

The Hive Model and the Factorisation of Kostka Coefficients

The hive model is used to explore the properties of both Kostka coefficients and stretched Kostka coefficient polynomials. It is shown that both of these may factorise, and that they can then be expressed as products of certain primitive coefficients and polynomials, respectively. It is further shown how to determine a sequence of linear factors (t+m) of the primitive polynomials, where t is th...

متن کامل

Polynomiality of the Q, T-kostka Revisited

Let K(q, t) = K λµ (q, t) λ,µ be the Macdonald q, t-Kostka matrix and K(t) = K(0, t) be the matrix of the Kostka-Foulkes polynomials K λµ (t). In this paper we present a new proof of the polynomiality of the q, t-Kostka coefficients that is both short and elementary. More precisely, we derive that K(q, t) has entries in Z[q, t] directly from the fact that the matrix K(t) −1 has entries in Z[t]....

متن کامل

Ja n 20 05 The computation of Kostka numbers and Littlewood - Richardson coefficients is # P - complete

Kostka numbers and Littlewood-Richardson coefficients play an essential role in the representation theory of the symmetric groups and the special linear groups. There has been a significant amount of interest in their computation ([1], [10], [11], [2], [3]). The issue of their computational complexity has been a question of folklore, but was asked explicitly by E. Rassart [10]. We prove that th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008